# Basics of Digital Electronics 

Prof.Anjali Jagtap anjalij@isquareit.edu.in

Department of Electronics and Telecommunication International Institute of Information Technology, Pune-4II 057

## Digital Signals

- An electrical signal with two discrete levels (high and low)
- Two discrete levels are represented by binary digits 0 and I referred as Binary number system.
- Gorge Boole introduced binary number system with algebra developed "Boolean Algebra"
- Represented in two different ways
- Positive logic system

- Negative logic system



## Digital system types

- Combinational logic system/circuits
- An output at any instant depends only on inputs applied at that instant.
- Example - Adder, subtractor, Comparator etc
- Basic building block - logic gates
- Sequential logic system/circuits
- An output at any instant depends only on inputs applied at that instant as well as on past inputs/outputs.
- Example - counters, sequence generator/ detector etc
- Requires memory
- Basic building block - Flips and logic gates


## Logic Gates

## - Basic logic gates

- AND gate
- Logical Multiplication
- Two input gate shown


Basic logic gates

- OR gate
- Logical Addition
- Two input gate shown



## -NOT/Inversion gate

- Logical inversion
- Single input single output gate



## - Universal logic gates

- NAND gate
- Two input gate shown

- NOR gate
- Two input gate shown



## ${ }^{\bullet}$ Special gates

- Ex-OR gate
- Two input gate shown

- Ex-NOR gate
- Two input gate shown


| Input A <br> (logic) | Input B <br> (logic) | $\mathrm{Y}=\mathrm{A}+\mathrm{B}$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## Boolean Algebra

- Mathematician George Boole developed rules for manipulation of binary variables.
- Rules :
- $A+0=A$
- $A+I=1$
- $A+A=A$
- $A+A^{\prime}=1$
- $A .0=0$
- $A . l=A$
- $A . A=A$
- $A . A^{\prime}=0$
- $A .(B+C)=A B+A C$


## Boolean Algebra

- $A+B C=(A+B) .(A+C)$
- $A+A . B=A$
- $A .(A+B)=A$
- $A+A^{\prime} \cdot B=A+B$
- $A .\left(A^{\prime}+B\right)=A . B$
- $A \cdot B+A^{\prime} \cdot B^{\prime}=A$
- $(A+B) \cdot\left(A+B^{\prime}\right)=A$
- $A \cdot B+A \cdot C^{\prime}=(A+C) \cdot\left(A^{\prime}+B\right)$
- $(A+B) \cdot\left(A^{\prime}+C\right)=A C+A^{\prime} B$
- $A B+A^{\prime} C+B C=A B+A^{\prime} C$
- $(A+b) \cdot\left(A^{\prime}+C\right) \cdot(B+C)=(A+B) \cdot\left(A^{\prime}+C\right)$


## De Morgan's Theorem

- $(A . B)^{\prime}=A^{\prime}+B^{\prime}$
- $(A+B)^{\prime}=A^{\prime} . B^{\prime}$


## Number System

| Number System | Base or radix | Symbols used ( $\mathrm{d}_{\mathrm{i}}$ or $\mathrm{d}_{-\mathrm{f}}$ ) | Weight assigned to position |  | Example |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | i | -f |  |
| Binary | 2 | 0, I | $2{ }^{\text {i }}$ | 2-f | 10101.10 |
| Octal | 8 | 0, I, 2,3,4,5,6,7 | $8^{i}$ | 8 -f | 3547.25 |
| Decimal | 10 | $\begin{gathered} 0, I, 2,3,4,5,6,7 \\ , 8,9 \end{gathered}$ | $10^{i}$ | $10^{-4}$ | 974.27 |
| Hexadecimal | 16 | $\begin{gathered} 0, I, 2,3,4,5,6,7 \\ , 8,9, A, B, C, D, \\ E, F \end{gathered}$ | $16^{6}$ | $16^{-4}$ | FA9.46 |

## Quantities/Counting

| Decimal | Binary | Octal | Hexadecimal |
| :---: | :---: | :---: | :---: |
| 0 | 0000 | 00 | 0 |
| 1 | 0001 | 01 | 1 |
| 2 | 0010 | 02 | 2 |
| 3 | 0011 | 03 | 3 |
| 4 | 0100 | 04 | 4 |
| 5 | 0101 | 05 | 5 |
| 6 | 0110 | 06 | 6 |
| 7 | 0111 | 07 | 7 |
| 8 | 1000 | 10 | 8 |
| 9 | 1001 | 11 | 9 |
| 10 | 1010 | 12 | B |
| 11 | 1011 | 13 | C |
| 12 | 1100 | 14 | D |
| 13 | 1110 | 15 | E |
| 14 | 1111 | 16 | F |
| 16 |  | 17 |  |

## Number System conversion

- Binary to decimal
- Multiply each bit by $2^{n}, n$ is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example
$(\mathrm{IIOIOI})_{2}=()_{10}$
$=1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=32+16+0+4+0+1$
$=(53)_{10}$

## Number System conversion

- Binary to octal
- Group bits in threes, starting on right
- Convert to octal number


## Example

$$
\begin{aligned}
(\mathrm{IIOIOI})_{2} & =()_{8} \\
& =\underline{110} \frac{101}{5} \\
& =6 \\
& =(65)_{8}
\end{aligned}
$$

## Number System conversion

- Binary to hexadecimal
- Group bits in fours, starting on right
- Convert to hexadecimal number

Example

$$
\begin{aligned}
(110101)_{2} & =()_{16} \\
& =\underline{11} \underline{0101} \\
& =\underline{0011} \underline{0101} \\
& =(35)_{16}
\end{aligned}
$$

## Number System conversion - Decimal to binary

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit IGroup bits in fours, starting on right


## Example


$=(110101)_{2}$

## Number System conversion

- Decimal to octal
- Divide by eight, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit IGroup bits in fours, starting on right
Example

$$
(53)_{10}=()_{8}
$$

$$
\begin{array}{r}
\frac{85315}{6} \\
=(65)_{8}
\end{array}
$$

## Number System conversion

- Decimal to hexadecimal
- Divide by 16 , keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit IGroup bits in fours, starting on right
Example
$(53)_{10}=()_{16}$

$=$| $16\|53\| 5$ |
| :---: |
| 3 |

$=(35)_{16}$

## Number System conversion

- Octal to binary
- Convert each octal digit to a 3-bit equivalent binary representation


## Example

$$
\begin{aligned}
(65)_{8} & =()_{2} \\
& =\underline{110} 101 \\
& =(110101)_{2}
\end{aligned}
$$

## Number System conversion

- Octal to decimal
- Multiply each bit by $8^{n}, \mathrm{n}$ is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example

$$
\begin{aligned}
(65)_{8}= & ()_{10} \\
& =6 \times 8^{1}+5 \times 8^{0} \\
& =48+5 \\
& =(53)_{10}
\end{aligned}
$$

## Number System conversion

- Octal to hexadecimal
- Use binary as an intermediary.

Example

$$
\begin{aligned}
(65)_{8} & =()_{16} \\
& =\underline{110101} \\
& =\underline{11} \underline{0101} \\
& =\underline{0011} \underline{0101} \\
& =(35)_{16}
\end{aligned}
$$

## Number System conversion

- Hexadecimal to binary
- Convert each hexadecimal digit to a 4-bit equivalent binary representation.


## Example

$$
\begin{aligned}
(6 \mathrm{~A})_{16} & =()_{2} \\
& =\underline{0110} \underline{1010} \\
& =(1101010)_{2}
\end{aligned}
$$

## Number System conversion

- Hexadecimal to octal
- Use binary as an intermediary.

Example

$$
\begin{aligned}
(6 \mathrm{~A})_{16} & =()_{8} \\
& =\underline{01101010} \\
& =1 \underline{101} \underline{010} \\
& =\underline{001} \underline{101} \underline{010} \\
& =(152)_{8}
\end{aligned}
$$

## Number System conversion

- Hexadecimal to decimal
- Multiply each bit by $8^{n}, n$ is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example

$$
\begin{aligned}
(6 \mathrm{~A})_{16}= & ()_{10} \\
& =6 \times 16^{1}+\mathrm{A} \times 16^{0} \\
& =6 \times 16^{1}+10 \times 16^{0} \\
& =96+10 \\
& =(106)_{10}
\end{aligned}
$$

## Complement representation

- One's complement format
- In binary number system, each bit is complimented.

Example
$(0100101)_{2}=(1011010)$ one's complement form

- Two's complement format
- In binary number system, each bit is complimented and binary I is added.
- Used to represent negative number.

Example
$(0100101)_{2}=(90)_{10}$
$=(10| | 0 \mid 0)_{2}$ one's complement form
$=(10|I O| O+1)_{2}$
$=(|0||0| \mid)_{2}=(-90)_{10}$ 2's complement

