Basics of Digital Electronics

Prof. Anjali Jagtap anjalij@isquareit.edu.in

Department of Electronics and Telecommunication International Institute of Information Technology, Pune – 411057

Digital Signals

- An electrical signal with two discrete levels (high and low)
- Two discrete levels are represented by binary digits 0 and 1 referred as Binary number system.
- Gorge Boole introduced binary number system with algebra developed "Boolean Algebra"
- Represented in two different ways
 - Positive logic system

```
High (3.5 V to 5 V)
Low (0 V to 1V)
```

Negative logic system

Digital system types

- Combinational logic system/circuits
 - An output at any instant depends only on inputs applied at that instant.
 - Example Adder, subtractor, Comparator etc
 - Basic building block logic gates
- Sequential logic system/circuits
 - An output at any instant depends only on inputs applied at that instant as well as on past inputs/outputs.
 - Example counters, sequence generator/ detector etc
 - Requires memory
 - Basic building block Flips and logic gates

Logic Gates

- Basic logic gates
 - AND gate
 - Logical Multiplication
 - Two input gate shown

Input A (logic)	Input B (logic)	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	

Basic logic gates

OR gate

- Logical Addition
- Two input gate shown

Input A (logic)	Input B (logic)	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT/Inversion gate

- Logical inversion
- Single input single output gate

Input A	Y
0	1
1	0

Universal logic gates

NAND gate

• Two input gate shown

Input A (logic)	Input B (logic)	Y=(A.B)
0	0	1
0	1	1
1	0	1
1	1	0

NOR gate

• Two input gate shown

A
$$Y=(A+b)$$
,

A $Y=(A+b)$,

B $Y=(A+b)$,

Input A	Input B	Y=(A.B)'
(logic)	(logic)	
0	0	1
0	1	0
1	0	0
1	1	0

Special gates

- Ex-OR gate
 - Two input gate shown

Input A	Input B	Y=A+B
(logic)	(logic)	
0	0	0
0	1	1
1	0	1
1	1	0

- Ex-NOR gate
 - Two input gate shown

Input A	Input B	Y=A+B
(logic)	(logic)	
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Algebra

- Mathematician George Boole developed rules for manipulation of binary variables.
- Rules :
 - A+0=A
 - A+I=I
 - A+A=A
 - A+A'=I
 - A.0=0
 - A. I = A
 - A.A=A
 - A.A'=0
 - A.(B+C)=AB+AC

Boolean Algebra

- A+BC=(A+B).(A+C)
- A+A.B=A
- A.(A+B)=A
- A+A'.B=A+B
- A.(A'+B)=A.B
- A.B+A'.B'=A
- (A+B).(A+B')=A
- A.B+A.C'=(A+C).(A'+B)
- (A+B).(A'+C)=AC+A'B
- AB+A'C+BC=AB+A'C
- (A+b).(A'+C).(B+C)=(A+B).(A'+C)

De Morgan's Theorem

- (A.B)'=A'+B'
- (A+B)'=A'.B'

Number System

Number System	Base or radix	Symbols used (d _i or d _{-f})	Weight assigned to position		Example
			i	-f	
Binary	2	0,1	2 ⁱ	2 ^{-f}	10101.10
Octal	8	0,1,2,3,4,5,6,7	8 ⁱ	8 ^{-f}	3547.25
Decimal	10	0,1,2,3,4,5,6,7	10 ⁱ	10 ^{-f}	974.27
Hexadecimal	16	0,1,2,3,4,5,6,7 ,8,9,A,B,C,D, E,F	l6 ⁱ	I6-f	FA9.46

Quantities/Counting

		<u> </u>		
Decimal	Binary	Octal	Hexadecimal	
0	0000	00	0	
1	0001	01	1	
2	0010	02	2	
3	0011	03	3	
4	0100	04	4	
5	0101	05	5	
6	0110	06	6	
7	0111	07	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	Е	
16	1111	17	F	

- Binary to decimal
 - Multiply each bit by 2ⁿ, n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

```
Example
```

$$(|10101)_2 = ()_{10}$$

= $|1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
= $|32 + 16 + 0 + 4 + 0 + 1|$
= $|(53)_{10}|$

- Binary to octal
 - Group bits in threes, starting on right
 - Convert to octal number

$$(110101)_2 = ()_8$$

= $\underline{110} \underline{101}$
= $6 5$
= $(65)_8$

- Binary to hexadecimal
 - Group bits in fours, starting on right
 - Convert to hexadecimal number

$$(110101)_2 = ()_{16}$$

= $11 \ 0101$
= $0011 \ 0101$
= $(35)_{16}$

- Decimal to binary
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit I Group bits in fours, starting on right

$$(53)_{10} = ()_{2} \quad \begin{array}{c} 2 & 53 & 1 \\ \hline 2 & 26 & 0 \\ \hline 2 & 13 & 1 \\ \hline 2 & 6 & 0 \\ \hline 2 & 3 & 1 \\ \hline \end{array}$$

$$= (110101)_2$$

- Decimal to octal
 - Divide by eight, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit I Group bits in fours, starting on right

$$(53)_{10} = ()_{8}$$

$$\frac{\frac{8|53|5}{6}}{6}$$

$$= (65)_{8}$$

- Decimal to hexadecimal

 - Divide by 16, keep track of the remainder
 First remainder is bit 0 (LSB, least-significant bit)
 Second remainder is bit I Group bits in fours, starting on right

$$(53)_{10} = ()_{16}$$

$$= \frac{16 |53| 5}{3}$$

$$= (35)_{16}$$

- Octal to binary
 - Convert each octal digit to a 3-bit equivalent binary representation

$$(65)_8 = ()_2$$

= 110 101
= (110101)₂

- Octal to decimal
 - Multiply each bit by 8ⁿ, n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$(65)_8 = ()_{10}$$

= $6 \times 8^1 + 5 \times 8^0$
= $48 + 5$
= $(53)_{10}$

- Octal to hexadecimal
 - Use binary as an intermediary.

$$(65)_8 = ()_{16}$$

$$= 110 101$$

$$= 11 0101$$

$$= 0011 0101$$

$$= (35)_{16}$$

- Hexadecimal to binary
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation.

$$(6A)_{16} = ()_2$$

= $0110 1010$
= $(1101010)_2$

- Hexadecimal to octal
 - Use binary as an intermediary.

$$(6A)_{16} = ()_{8}$$

$$= 0110 1010$$

$$= 1 101 010$$

$$= 001 101 010$$

$$= (152)_{8}$$

- Hexadecimal to decimal
 - Multiply each bit by 8ⁿ, n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

$$(6A)_{16} = ()_{10}$$

= $6 \times 16^{1} + A \times 16^{0}$
= $6 \times 16^{1} + 10 \times 16^{0}$
= $96 + 10$
= $(106)_{10}$

Complement representation

- One's complement format
 - In binary number system, each bit is complimented.

Example

```
(0100101)_2 = (1011010) one's complement form
```

- Two's complement format
 - In binary number system, each bit is complimented and binary I is added.
 - Used to represent negative number.

$$(0100101)_2 = (90)_{10}$$

= $(1011010)_2$ one's complement form
= $(1011010 + 1)_2$
= $(1011011)_2 = (-90)_{10}$ 2's complement