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Introduction to Stochastic Process

Signals

Deterministic: can be reproduced exactly with repeated
measurements.

s(t) = Acos(2πfct+ θ)

where A,fc and θ are constant.

Random: signal that is not repeatable in a predictable manner.

s(t) = Acos(2πfct+ θ)

where A,fc and θ are variable.

Unwanted signals: Noise
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Stochastic Process

Definition:

A stochastic process is a set of random variables indexed in time.

Mathematically:

Mathematically relationship between probability theory and
stochastic processes is as follows-

Sample point →Sample Function
Sample space →Ensemble
Random Variable→ Random Process
Sample point s is function of time :

X(s, t), −T ≤ t ≤ T

Sample function denoted as:

xj(t) = X(t, sj), −T ≤ t ≤ T
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Stochastic Process

A random process is defined as the ensemble(collection) of time
functions together with a probability rule

|xj(t)|, j = 1, 2, . . . , n
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Stochastic Process

Stochastic Process

Each sample point in S is associated with a sample function x(t)

X(t, s) is a random process

is an ensemble of all time functions together with a probability rule
X(tk, sj) is a realization or sample function of the random process
{x1(tk), x2(tk), . . . , xn(tk) = X(tk, s1), X(tk, s2), . . . , X(tk, sn)}
Probability rules assign probability to any meaningful event
associated with an observation An observation is a sample function
of the random process

A stochastic process X(t, s) is represented by time indexed ensemble
(family) of random variables {X(t, s)}
Represented compactly by : X(t)

“A stochastic process X(t) is an ensemble of time functions, which,
together with a probability rule, assigns a probability to any
meaningful event associated with an observation of one of the
sample functions of the stochastic process”.
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Stochastic Process:
Stationary Vs Non-Stationary Process

Stationary Process:

If a process is divided into a number of time intervals exhibiting
same statistical properties, is called as Stationary.
It is arises from a stable phenomenon that has evolved into a
steady-state mode of behavior.

Non-Stationary Process:

If a process is divided into a number of time intervals exhibiting
different statistical properties, is called as Non-Stationary.
It is arises from an unstable phenomenon.
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Classes of Stochastic Process:
Strictly Stationary and Weakly Stationary

The Stochastic process X(t) initiated at t = −∞ is said to be
Stationary in the strict sense, or strictly stationary if,

FX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk) =
FX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) Where,

X(t1), X(t2), . . . , X(tk) denotes RVs obtained by sampling process
X(t) at t1, t2, . . . , tk respectively.
FX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk) denotes Joint distribution
function of RVs.
X(t1 + τ), X(t2 + τ), . . . , X(tk + τ) denotes new RVs obtained by
sampling process X(t) at t1 + τ, t2 + τ, . . . , tk + τ respectively. Here
τ is fixed time shift.
FX(t1+τ),X(t2+τ),...,X(tk+τ)(x1, x2, . . . , xk) denotes Joint
distribution function of new RVs.
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Classes of Stochastic Process:
Strictly Stationary and Weakly Stationary

Properties of Strictly Stationary Process:

For k = 1, we have FX(t)(x) = FX(t+τ)(x) = FX(x) for all t and τ .
First-order distribution function of a strictly stationary stochastic
process is independent of time t.
For k = 2, we have FX(t1),X(t2)(x1, x2) = FX(0),X(t1−t2)(x1, x2) for
all t1 and t2. Second-order distribution function of a strictly
stationary stochastic process depends only on the time difference
between the sampling instants and not on time sampled.

Weakly Stationary Process:

A stochastic process X(t) is said to be weakly stationary(Wide-Sense
Stationary) if its second-order moments satisfy:

The mean of the process X(t) is constant for all time t.
The autocorrelation function of the process X(t) depends solely on
the difference between any two times at which the process is sampled.

Summary of Random Processes

Wide-Sense Stationary processes

Strictly Stationary Processes
Ergodic Processes

Non-Stationary processes
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Mean, Correlation, and Covariance Functions of WSP

Mean:

Mean of real-valued stochastic process X(t), is expectation of the
random variable obtained by sampling the process at some time t, as
shown by

µX(t) = E[X(t)]
µX(t) =

∫∞
−∞ xfX(t)(x)dx

where fX(t)(x) is the first-order probability density function of the
process X(t).
µX(t) = µX for weakly stationary process

Correlation:

Autocorrelation function of the stochastic process X(t) is product of
two random variables, X(t1) and X(t2)

MXX(t1, t2) = E[X(t1)X(t2)]
MXX(t1, t2) =

∫∞
−∞

∫∞
−∞ x1x2fX(t1),X(x2)(x1, x2)dx1dx2

where fX(t1),X(x2)(x1, x2) is joint probability density function of the
process X(t) sampled at times t1 and t2. MXX(t1, t2) is a
second-order moment. It is depend only on time difference t1 − t2 so
that the process X(t) satisfies the second condition of weak
stationarity and reduces to.
MXX(t1, t2) = E[X(t1)X(t2)] = RXX(t2 − t1)
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Mean, Correlation, and Covariance Functions of WSP

Properties of Autocorrelation Function

Autocorrelation function of a weakly stationary process X(t) can
also be represented as
RXX(τ) = E[X(t+ τ)X(t)]
where τ denotes a time shift; that is,t = t2 and τ = t1 − t2
Properties:

RXX(0) = E
[
X2(t)

]
(Mean-Square Value)

RXX(τ) = RXX(−τ) also RXX(τ) = E[X(t− τ)X(t)]
(Symmetry)
|RXX(τ)| ≤ RXX(0) (Bound)

ρXX(τ) =
RXX (τ)
RXX (0)

(Normalization [−1, 1])

Covariance:

Autocovariance function of a weakly stationary process X(t) is
defined by
CXX(t1, t2) = E[(X(t1)− µx)(X(t2)− µx)]
CXX(t1, t2) = RXX(t2 − t1)− µ2

x

The autocovariance function of a weakly stationary process X(t)
depends only on the time difference (t2 − t1)
The mean and autocorrelation function only provide a weak
description of the distribution of the stochastic process X(t).
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RXX(τ) = RXX(−τ) also RXX(τ) = E[X(t− τ)X(t)]
(Symmetry)
|RXX(τ)| ≤ RXX(0) (Bound)

ρXX(τ) =
RXX (τ)
RXX (0)

(Normalization [−1, 1])

Covariance:

Autocovariance function of a weakly stationary process X(t) is
defined by
CXX(t1, t2) = E[(X(t1)− µx)(X(t2)− µx)]
CXX(t1, t2) = RXX(t2 − t1)− µ2

x

The autocovariance function of a weakly stationary process X(t)
depends only on the time difference (t2 − t1)
The mean and autocorrelation function only provide a weak
description of the distribution of the stochastic process X(t).
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Example Question:
InSem 2014, InSem 2015 (Sin), InSem 2016 (−π

2
≤ Θ ≤ π

2
)

Examples

Show that the Random Process X(t) = Acos(ωct+ Θ) is wide sense
stationary process, where Θ is RV uniformly distributed in range (0, 2π)

Answer:

The ensemble consist of sinusoids of constant amplitude A and constant
frequency ωc, but phase Θ is random.

The phase is equally likely to any value in the range (0, 2π).

Θ is RV uniformly distributed over the range (0, 2π).

fΘ(θ) =
1

2π
, 0 ≤ θ ≤ 2π

= 0, elsewhere
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Example Question:
InSem 2014, InSem 2015 (Sin), InSem 2016 (−π

2
≤ Θ ≤ π

2
)

Answer:

Because cos(ωct+ Θ) is function of RV Θ, Mean of Random Process
X(t) is

X(t) = Acos(ωct+ Θ)
= Acos(ωct+ Θ)

cos(ωct+ Θ) =
∫ 2π

0
cos(ωct+ θ)fΘ(θ)dθ

=
1

2π

∫ 2π

0
cos(ωct+ θ)dθ

= 0
X(t) = 0

Thus the ensemble mean of sample function amplitude at any time
instant t is zero.

The Autocorrelation function RXX(t1, t2) for this process can also be
determined as

RXX(t1, t2) = E[X(t1)X(t2)]
= A2cos(ωct1 + Θ)cos(ωct2 + Θ)
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Example Question:
InSem 2014, InSem 2015 (Sin), InSem 2016 (−π

2
≤ Θ ≤ π

2
)

Answer:

Continue. . .

= A2cos(ωct1 + Θ)cos(ωct2 + Θ)

=
A2

2

[
cos(ωc(t2 − t1)) + cos(ωc(t2 + t1) + 2Θ)

]
The term cos(ωc(t2 − t1)) does not contain RV Hence,
cos(ωc(t2 − t1)) = cos(ωc(t2 − t1))

The term cos(ωc(t2 + t1) + 2Θ) is a function of RV Θ, and it is

cos(ωc(t2 + t1) + 2Θ) =
1

2π

∫ 2π

0
cos(ωc(t2 + t1) + 2θ)dθ

= 0

RXX(t1, t2) =
A2

2
cos(ωc(t2 − t1)),

RXX(τ) =
A2

2
cos(ωc(τ)), · · · τ = t2 − t1

From X(t) = 0 and RXX(τ) =
A2

2
cos(ωc(τ)) it is clear that X(t) is

Wide Sense Stationary Process
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Time Vs Ensemble Average and Ergodic Process

Ensemble Average

Difficult to generate a number of realizations of a random process
Use time averages

Mean ⇒ µX(T ) =
1

2T

∫ +T

−T x(t)dt

Autocorrelation ⇒ RXX(τ, T ) =
1

2T

∫ +T

−T x(t)x(t+ τ)dt

Ergodic Process

Ergodicity: A random process is called Ergodic if
it is ergodic in mean:

limT→∞ µX(T ) = µX
limT→∞ var [µX(T )] = 0

it is ergodic in autocorrelation:

limT→∞RXX(τ, T ) = RXX(τ)
limT→∞ var [RXX(τ, T )] = 0
where µX and RXX(τ) are the ensemble averages of the same
random process.
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Transmission of a Weakly Stationary Process through a
LTI Filter

Linear Time Invariant Filter

Suppose that a stochastic process X(t) is applied as input to a linear
time-invariant filter of impulse response h(t), producing a new
stochastic process Y (t) at the filter output.

It is difficult to describe the probability distribution of the output
stochastic process Y(t), even when the probability distribution of the
input stochastic process X(t) is completely specified
For defining the mean and autocorrelation functions of the output
stochastic process Y (t) in terms of those of the input X(t),
assuming that X(t) is a weakly stationary process.
Transmission of a process through a linear time-invariant filter is
governed by the convolution integral
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Transmission of a Weakly Stationary Process through a
LTI Filter

Continue. . .

we may thus express the output stochastic process Y (t) in terms of
the input stochastic process X(t) as

Y (t) =
∫+∞
−∞ h(τ1)X(t− τ1)dτ1

where τ1 is local time. Hence, the mean of Y (t) is
µY (t) = E [Y (t)]

µY (t) = E
[∫+∞
−∞ h(τ1)X(t− τ1)

]
dτ1

Provided that the expectation E [X(t)] is finite for all t and the filter
is stable.
µY (t) =

∫+∞
−∞ h(τ1)E [X(t− τ1)] dτ1

µY (t) =
∫+∞
−∞ h(τ1)µX(t− τ1)dτ1

When the input stochastic process X(t) is weakly stationary, the
mean µX(t) is a constant µX
µY = µX

∫+∞
−∞ h(τ1)dτ1

µY = µXH(0)

where H(0) is the zero-frequency response of the system
“The mean of the stochastic process Y(t) produced at the output of
a linear time-invariant filter in response to a weakly stationary
process X(t), acting as the input process, is equal to the mean of
X(t) multiplied by the zero-frequency response of the filter.”
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Transmission of a Weakly Stationary Process through a
LTI Filter

Autocorrelation

Consider the autocorrelation function of the output stochastic
process Y (t)

MY Y (t, u) = E [Y (t)Y (u)]

where t and u denote two values of the time at which the output
process Y (t) is sampled

. = E

[∫ +∞

−∞
h(τ1)X(t− τ1)dτ1

∫ +∞

−∞
h(τ2)X(u− τ2)dτ2

]
Here again, provided that the mean-square value E

[
X2(t)

]
is finite

for all t and the filter is stable

=

∫ +∞

−∞

{
h(τ1)

∫ +∞

−∞
dτ2h(τ2)E [X(t− τ1)X(u− τ2)]

}
dτ1

=

∫ +∞

−∞

[
h(τ1)

∫ +∞

−∞
dτ2h(τ2)MXX(t− τ1, u− τ2)

]
dτ1

When the input X(t) is a weakly stationary process, the
autocorrelation function of X(t) is only a function of the difference
between the sampling times tτ1 and uτ2. Thus, putting τ = ut
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RY Y (τ) =

∫ +∞

−∞

∫ +∞

−∞
h(τ1)h(τ2)RXX(τ + τ1 − τ2)dτ1dτ2
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Power Spectral Density of a Weakly Stationary Process

The impulse response of a linear time-invariant filter is equal to the
inverse Fourier transform of the frequency response of the filter

Using H(f) to denote the frequency response of the filter, we may
thus write

h(τ1) =

∫ +∞

−∞
H(f) exp(j2πfτ1)df

E
[
Y 2(t)

]
=

∫ +∞

−∞

∫ +∞

−∞
h(τ1)h(τ2)RXX(τ1 − τ2)dτ1dτ2

=

∫ +∞

−∞

∫ +∞

−∞

[∫ +∞

−∞
H(f) exp(j2πfτ1)df

]
h(τ2)RXX(τ1 − τ2)dτ1dτ2

=

∫ +∞

−∞

[
H(f)

∫ +∞

−∞
h(τ2)dτ2

∫ +∞

−∞
RXX(τ1 − τ2) exp(j2πfτ1)dτ1

]
df

by τ = τ1 − τ2

=

∫ +∞

−∞
H(f)

[∫ +∞

−∞
h(τ2) exp(j2πfτ2)dτ2

∫ +∞

−∞
RXX(τ) exp(−j2πfτ)dτ

]
df

=

∫ +∞

−∞
|H(f)|2

[∫ +∞

−∞
RXX(τ) exp(−j2πfτ)dτ

]
df

as |H(f)|2 = H(f)H∗(f) and square brackets represents fourier
transform of the autocorrelation function RXX of the input process
X(t)
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Power Spectral Density of a Weakly Stationary Process

We may now define a new function for fourier transform of the
autocorrelation function.

The new function SXX(f) is called the power spectral density, or
power spectrum, of the weakly stationary process X(t) and denoted
as

SXX(f) =

∫ +∞

−∞
RXX(τ) exp(−j2πfτ)dτ

E
[
Y 2(t)

]
=

∫ +∞

−∞
|H(f)|2SXX(f)df

which is the desired frequency-domain equivalent to the time-domain
relation

The mean-square value of the output of a stable linear time-invariant
filter in response to a weakly stationary process is equal to the
integral over all frequencies of the power spectral density of the input
process multiplied by the squared magnitude response of the filter.
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Properties of the Power Spectral Density(PSD)

Properties of PSD

1 Zero Correlation among Frequency Components

The individual frequency components of the power spectral density
SXX(f) of a weakly stationary process X(t) are uncorrelated with
each other.
No overlap, and therefore no correlation.

2 Zero-frequency Value of Power Spectral Density

The zero-frequency value of the power spectral density of a weakly
stationary process equals the total area under the graph of the
autocorrelation function

SXX(0) =

∫ +∞

−∞
RXX(τ)dτ

3 Mean-square Value of Stationary Process

The mean-square value of a weakly stationary process X(t) equals the
total area under the graph of the power spectral density of the process

E
[
X2(t)

]
=

∫ +∞

−∞
SXX(f)df
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Properties of the Power Spectral Density(PSD)

Properties of PSD

4 Nonnegativeness of Power Spectral Density

The power spectral density of a stationary process X(t) is always
nonnegative.

SXX(f) ≥ 0

5 Symmetry

The power spectral density of a real-valued weakly stationary process
is an even function of frequency

SXX(f) = SXX(−f)

6 Normalization

The power spectral density, appropriately normalized, has the
properties associated with a probability density function in probability
theory

PXX(f) =
SXX(f)∫∞

−∞ SXX(f)df
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The power spectral density, appropriately normalized, has the
properties associated with a probability density function in probability
theory

PXX(f) =
SXX(f)∫∞

−∞ SXX(f)df
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The Gaussian Process

Stochastic process of interest is the Gaussian process which builds
on the Gaussian distribution.

It is the most frequently encountered random process in the study of
communication systems.

Gaussian Process

Let us suppose that we observe a stochastic process X(t) for an
interval that starts at time t = 0 and lasts until t = T
we weight the process X(t) by some function g(t) and then integrate
the product g(t)X(t) over the observation interval (0, T )

Y =

∫ T

0
g(t)X(t)dt

We refer to Y as a linear functional of X(t)

1 If the weighting function g(t) is such that the mean-square value of
the random variable Y is finite

2 And if the random variable Y is a Gaussian-distributed random
variable for every g(t) in this class of functions
Then the process X(t) is said to be a Gaussian process.

A process X(t) is said to be a Gaussian process if every linear
functional of X(t) is a Gaussian random variable
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Properties The Gaussian Process

Random variable Y has a Gaussian distribution if its probability
density function has the form

fY (y) =
1√
2πσ2

exp

(
− (y − µ)2

2σ2

)
where µ is the mean and σ2 is the variance of the random variable Y

Properties The Gaussian Process

1 Linear Filtering

If a Gaussian process X(t) is applied to a stable linear filter, then the
stochastic process Y(t) developed at the output of the filter is also
Gaussian.

2 Stationarity

If a Gaussian process is weakly stationary, then the process is also
strictly stationary.

3 Independence

If the random variables X(t1), X(t2), . . . , X(tn), obtained by
respectively sampling a Gaussian process X(t) at times t1, t2, . . . , tn,
are uncorrelated, that is

E
[
(X(tk)− µX(tk))(X(ti)− µX(ti)

)
]

= 0 i 6= k

then these random variables are statistically independent.
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Noise

Unwanted signals that tend to disturb the transmission and
processing of signals in communication systems.

Sources of noise in a communication system

External

Atmospheric noise
Galactic noise
Man-made noise

Internal

Noise that arises from the phenomenon of spontaneous fluctuations
of current flow that is experienced in all electrical circuits
Shot noise - Discrete nature of current flow in electronic devices.
Thermal noise - Random motion of electrons in a conductor.

The noise analysis of communication systems is based on a source of
noise called white-noise, which is to be discussed next.
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Noise that arises from the phenomenon of spontaneous fluctuations
of current flow that is experienced in all electrical circuits
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White Noise

Adjective ’white’ is used in the sense that white light contains equal
amount of all frequencies within the visible band of electromagnetic
radiation.

White noise denoted by W (t), is a stationary process whose PSD
SW (f) has constant value across all frequencies.

PSD of white noise is

SWW (f) = N0
2

for all f

Its auto-correlation function is

RWW (τ) = N0
2
δ(τ)
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