

Enhancement in Digital Image Processing

Ashok N Shinde ashok.shinde0349@gmail.com International Institute of Information Technology Hinjawadi Pune

September 7, 2017

Image Enhancement in the Spatial Domain

The spatial domain

- The image plane
 - Digital image is a Cartesian coordinate system of discrete rows and columns.
 - At the intersection of each row and column is a pixel.
 - Each pixel has a value, which we will call intensity.
- The frequency domain
 - A (2-dimensional) discrete Fourier transform of the spatial domain image.
- Enhancement
 - To improve the quality of an image by using transformation on the image.
 - Often the improvement is to make the image better looking, by increasing the intensity or contrast.

Image Enhancement in the Spatial Domain

A mathematical representation of spatial domain enhancement

- The transformation is: g(x, y) = T[f(x, y)]
 - where f(x, y) the input image.
 - where g(x, y) the processed image.
 - T : an operator on f, defined over some neighborhood of (x, y)
 - Example: Low Pass and High Pass Filtering
- Example: Low Pass Filtering
 - Low pass filter is used to remove high frequency content and noise
- Example: High Pass Filtering
 - High pass filter is used to remove low frequency content and obtain the edges in am image.

Image Enhancement: Low Pass Filtering

Low Pass Filtering

• Example:

	1	2	1
1/16	2	4	2
	1	2	1
	b)		

- Filter a) is Low Pass Filter
- Filter b) is Weighted Low Pass Filter
- Results:
- Remove the Noise from image.
- Blur the image.
- Generally used in Pre-processing.

Image Enhancement: High Pass Filtering

High Pass Filtering

• Example:

- Filter a) Finds Vertical Edges
- Filter b) Finds Horizontal Edges
- Filter c) Laplacian Point Detection
- Results:
- Finds the edges from image.
- Finds the horizontal and vertical edges.
- Generally used for Finding Shapes.

Hope Foundation's International Institute of Information Technology, $I^2 I T$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.inlinfo@isquareit.edu.in

5/18

Result: Low Pass and High Pass Filtering

Result of LPF and HPF

• Lena image filtered using Low Pass and High Pass Filter

- Lena image
- Lena image filtered using Low Pass
- Lena image filtered using High Pass Filter

Other Image Enhancement Techniques

A mathematical representation of spatial domain enhancement

- Geometric transformation techniques
 - Image Reflection
 - Image Translation
 - Image Scaling
 - Image Shearing
- Spatial domain techniques
 - Point operations
 - Histogram equalization and matching
 - Applications of histogram-based enhancement
- Frequency domain techniques
 - Unsharp masking
 - Homomorphic filtering

Geometric transformation techniques: Example

Geometric transformation

• Example:

- No change
- Translation
- Scaling about origin

Geometric transformation techniques: Example

Geometric transformation

• Example:

- Rotation about origin
- Shearing in x direction
- Shearing in y direction

Geometric transformation techniques: Example

Geometric transformation

• Example:

- Reflection about origin
- Reflection about x axis
- Reflection about y axis

Spatial domain techniques

Point Operations(Point Processing)

- The simplest kind of range transformations which are independent of position (x, y): g(x, y) = T[f(x, y)]
- This is called point processing.
- Basic Point Processing Techniques are:
 - Negative of Image
 - Log Transformation
 - Power Law Transformation
 - Contrast Stretching
 - Gamma Correction

Gray Level Transformation

Hope Foundation's International Institute of Information Technology, $I^2 IT$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.in|info@isquareit.edu.in

< 口 > < (司 >

< ∃⇒

Negative of Image

a b

FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Hope Foundation's International Institute of Information Technology, $I^2 IT$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.in|info@isquareit.edu.in

A D > A D >

< 3 > <

13/18

Power Law Transformation

Hope Foundation's International Institute of Information Technology, $I^2 IT$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.in|info@isquareit.edu.in

イロト イヨト イヨト イ

Gamma Correction

Hope Foundation's International Institute of Information Technology, $I^2 IT$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.in|info@isquareit.edu.in

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< 注→ -

Different Gray Level Transformation

Hope Foundation's International Institute of Information Technology, $I^2 IT$, P-14, Rajiv Gandhi Infotech Park, MIDC Phase 1, Hinjawadi, Pune - 411 057. Tel - +91 20 22933441 / 2 / 3 — www.isquareit.edu.in|info@isquareit.edu.in

< ∃ →

- 1 Gonzalez, R. C., & Woods, R. E. 1. (2008). "Digital Image Processing (3rd ed.)", Prentice Hall.
- 2 https://en.wikipedia.org/wiki/Transformation_matrix
- 3 https://en.wikipedia.org/wiki/File: 2D_affine_transformation_matrix.svg

Author Information

For further information please contact

Prof. Ashok N Shinde Department of Electronics & Telecommunication Engineering Hope Foundation's International Institute of Information Technology, (I²IT) Hinjawadi, Pune 411 057 Phone - +91 20 22933441 www.isquareit.edu.in|ashoks@isquareit.edu.in

